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Analysis of the Time Response of Multiconductor

Transmission Lines with Frequency-Dependent

Losses by the Method of Convolution-

Characteristics
Jun-Fa Mao and Zheng-Fan Li

Abstract—A new method for analysis of the time response of
multiconductor transmission lines with frequency-dependent
losses is presented. This method can solve the time response of
various kinds of transmission lines with arbitrary terminal net-

works. Particularly it can analyze nonuniform lines with fre-

quency-dependent losses, for which there is no existing effective
method to analyze their time response so far. This method starts

from the frequency-domain telegrapher’s equations. After de-

coupling and inversely Fourier transforming, th[en a set of de-

coupled time-domain equations including convolutions are

given. These equations can be solved with the characteristic
method, The results obtained with this method are stable and
accurate. Two examples are given to illustrate the application
of this method to various multiconductor transmission lines.

I. INTRODUCTION,

I N LARGE-SCALE high-speed integrated circuits,

multiconductor transmission lines are usually used as

interconnections. When the speed is relatively high, the

delay, crosstalk, and distortion of signals [1], [2] are ob-

vious. The time response of these lines has been of inter-

est’ for many years and well studied [3]–[9], For different

kinds of lines, there are different methods for analysis.

For uniform lines, lossless lines can be easily analyzed

by the modal analysis method in the time-domain [10].

Arbitrarily loaded lossy uniform lines with frequency-in-

dependent parameters have been analyzed by the charac-

teristic method [6] et al. Linearly loaded uniform lines

with frequency-dependent parameters can be studied with

the frequency-domain method [7] et al. For nonlinearly

loaded uniform lines with frequency-dependent parame-

ters, there have been several efficient methods to analyze

[11]-[13], In these methods the relations between the re-

sponse signals at the input and output ends of the lines are

first obtained in the frequency-domain by solving the fre-

quency-domain telegrapher’s equations directly or indi-

rectly, then transformed into the time-domain either by
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convolution [11], [13] or by polynomial ratio approxi-
mation [12].

About the nonuniform lines, several methods have been

delivered for analysis in the case of frequency-indepen-

dent parameters [8], [14], [15], but these methods are dif-

ficult to be applied to the case of frequency-dependent

parameters. If nonuniform lines with frequency-depen-

dent parameters are approximated by many short sections

of uniform lines, the methods as given in [ 11]-[ 13] may

be able to analyze them, but this would make the problem

complicated. So there is no efficient method for analysis

of the time response of nonuniform lines with frequency-

dependent parameters so far.

In this paper, a method of convolution-characteristics

is presented. Convolution is a usual technique to deal with

the frequency-dependence of line parameters, and the

characteristic method has been applied to analyze non-

uniform lines with frequency-independent parameters

[14]. The method of convolution-characteristics in this

paper combines the functions of both convolution and

characteristics. This method can analyze the time re-

sponse of nonuniform lines with frequency-dependent

losses under arbitrary load conditions. Of course, as a

general method, it can also analyze the various kinds of

uniform transmission lines described above. It starts from

the telegrapher’s equations in the frequency-domain. The

structure and coupling mode of the transmission lines

considered may be arbitrary, but for the reason of illus-

trating this method more clearly, two assumptions are

made in this paper, Under these assumptions, the teleg-

rapher’s equations in the frequency-domain are easily de-

coupled and then inversely Fourier transformed. Thus a

set of decoupled time-domain equations including con-

volutions are gotten, the convolutions are produced due

to the frequency-dependent losses. These decoupled

equations can be numerically solved using the character-

istic method [16] in which the segmentation of each de-

coupled line is taken, and this is why the nonuniformity

of the lines can be studied. Two examples are given to

illustrate the application of this method, and some results

are favorably compared with those obtained with other

methods.
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II. THEORY

In this paper multiconductor transmission lines are con-

sidered to be quasi-TEM lines so they satisfy the teleg-

rapher’s equations. In general case, the parameters of the

transmission lines are frequency-dependent considering

the ultra-broadband spectrum occupied by the high-speed

signals, but only the frequency-dependent performance of

resistances and conductance of lines is obvious. Capac-

itances are almost frequency-independent. For induc-

tances of lines, their internal inductances vary with fre-

quency, so the total inductances are frequency-dependent

[4], but the variation of them is unremarkable because the

internal inductances are only small parts of the total in-

ductances for general transmission system structure in

large-scale high-speed integrated circuits. Hence in prac-

tical case, only the frequency-dependence of resistances

and conductance of the lines must be considered, while

the inductances and capacitances are approximated to be

independent of frequency.

As will be seen, the frequency-dependence of conduc-

tance can be dealt with the same way to that of resis-

tances. On the other hand, conductance have less influ-

ence on the time response of the lines than resistances in

practical transmission lines, so in this paper the conduc-

tance are also considered to be frequency-independent

for simplification. Then the telegrapher’s equations of the

multiconductor lines in the frequency-domain can be writ-

ten as

a [v(x, u)] /ax = – [I?(X, cd)] [z(x, (J)]

– jw[L(x)] [z(x, u)] (1)

6’ [l(x, w)] /dx = – [G(x)] [V(X, a)]

– jw[c(x)] [V(X> @)] (2)

where [L(x)], [C(x)], [R(x, u)] and [G(x)] are respectively

inductance, capacitance, resistance and conductance

N-by-N (N is the number of the lines) matrices per unit

length. They are all functions of position (.x) on the lines

in general nonuniform case, but from the above discus-

sions, only [R(x, u)] is still function of angular frequency

(w) because of skin effect and proximity effect.

Equations (1) and (2) are coupled ones, there are sev-

eral methods to decouple them [9], [14], [17]. Here we

decouple equations (1) and (2) with the method in [17] to
illustrate our method in this paper more clearly. In the

method in [17], two assumptions on the structure of the

coupled lines are made. One is that each transmission line

is coupled directly only with the closest one to the left

and with the closest one to the right. This assumption is

valid in some practical cases, in particular when the trans-

mission lines are microstrips on a multilayer printed cir-

cuit board where every signal plane is sandwiched be-

tween two ac ground planes. Another assumption is that

the lines are identical and equally spaced and side effects

are negligible. This assumption is reasonable for some

transmission lines, too. In [18] the errors introduced by
these two assumptions are analyzed and a method to find

the upper bounds on such errors is developed. Under these

assumptions [L(x)], [C(x)], [Z?(x, ~)] and [G(x)] are all

symmetric tridiagonal Toeplitz matrices at any position

(x) and frequency (w). Matrices of this kind have an im-

portant property in which they can be diagonalized with

a matrix [M] which is the matrix of right eigenvectors of

such matrices and is decided only by N, no matter what

value of the elements of such matrices are. Let

[V(X> 0)] = [M] [7(.X, co)] (3)

[1(X, W)] = [M] [7(X, cd)] (4)

and insert them into (1) and (2), a set of decoupled equa-

tions are then obtained:

a [V(X, ~)1/ax = – [R(x, ~)1 [7(X, ~)1

– jw[z(x)] [z(x, cd)] (5)

d [Z(X, cd)] /dX = – [G(x)] [7(X, LO)]

– jw[c(x)] [T(.X, Q)] (6)

where [~(x)] = [M] – 1[L(x)] [M] is diagonal, so are

[~(x)], [R(x, u)] and [~(x)]. [M] is the matrix of right

eigenvectors of N-by-N Toeplitz matrices.

Note that the above two assumptions are not restric-

tions of the method in this paper. For the general trans-

mission lines with arbitrary structure, the decoupling

method in [14] applies. In that method in [14], [L(x)] and

[C(x)] are diagonalized by the matrices of eigenvectors of

[L(x)] [C(x)] and [C(x)] [Z,(x)]. As long as [L(x)] and

[C(x)] are diagonalized, the characteristic method can be

applied, no matter whether [R(x, u)] and [G(x)] are dia-

gonalized.

Equations (5) and (6) can be rewritten as

aT[(x, ~)/ax = –RI(X, W)l, (x, w) – jwZ, (X)7,(X, w)

(7)

al, (.x, W) /ax = – G (x) 7,(X5 W) – jwZ, (x) V, (x, MO

i=l,2, -”-, N (8)

where ~, (x), ~, (X), ~, (x, w) and G, (x) are the ith diago-

nal elements of matrices [L(x)], [C(x)], [R(x, co)] and

[G(x)], respectively, ~, (x, w) and ~, (x, w) are the ith ele-

ments of vectors [7(x, w)] and [ I(x, u)].

Now inversely Fourier transform (7) and (8), one can
get

d~i(x, f)/ax = L(x, t) – Z, (x)ali (x, t)/at (9)

a~,(x, t)/ax = –GL(x)~ (x, o – Zt(x)a~ (x, t)/at

(lo)

in which ~A(x, t) and ~, (x, t) are the inverse Fourier trans-

forms of V,(x, w) and ~,(x, w), i = 1, 2, . . . , N. If

[V(X, t)] and [1(x, t)] are the time response we want, and

[T(x, t)] and [7(x, t)] are the vectors whose elements are

~, (x, t) and j, (.x, t), because [M] is a constant matrix, it
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is easy to see that

[V(.X, t)] = [M] [T(X, t)] (11)

[1(X, t)] =’ [M] [7(X, f)]. (12)

In (9), T, (x, t) is a convolution:

!

r

~(x, r) = ~ F~(X, ~)7i(X, t – 7) d7 (13)

where ~i (x, t) is the inverse Fourier transform of

~i (x, w). l“i (x, t) can be numerically calculated which will

be seen below,

Equations (9) and (10) are decoupled ones in the time-

domain and can be solved with the generalized character-

istic method. Let

dx/dt = 1/-,

from (9) and (10), one can get

d(~ + ~~i)/dt

i=l,2, -”. ,N

= – (TiGi/Ei+ ~/~) + 7iFDi
i=l,2, . . ..N (14)

where brackets have been omitted for brevity, and

( )/d ~i (X)- ~
FDi = FDi (X) = ~ —

2Li (X) Cj (X)

Similarity, let dx/dt = – 1 /_fi, there is

d(~i – ~~i)/dt
——

= (~G,/Zi - ~/fi) + ?iFDi

i=l,2, . . .. iv. (15)

Equations (14) and (15) can be given their numerical

forms with the trapezoid algorithm:

T’(X~+l, t.+, ) + J__Li(xk+l )/~i(xk +l)~i(~k.}l, t.+l)

= ~i(x~, ~~) + fii(xk)/zj (xk)Tj(xk, ‘.)

+ .5At[–~1 (X~, tn ) Gi(Xk)/~i(Xk) - ~ (X~, t.)/

&i(X~)Ci(X~) – ~(X~+,, t~+l)Ci(X~+,)/

~i(xk+l) + ~i(x~, tn)FDi(X~) – ~(X~+I, t.+1)/

~Ll(xk+l)~i(xk+l)

+ ~i(xk+l, ~n+l)FDi(~~+l)l (16)

~(x~-,, tn+l) – J Li(xk-l )/~i(xk- l)~i(xl{-l, t.+l)

= Ti(X~, tn) – &i(X~)/Ei(X~)7~(X~, t.)

+ .5At[–~i(x~, t~)~i(x~)/~l(X~) -1- ~(X~j ~.)/

JZi(X~)Zi(X~) – 7i(X&~, ‘.+l)c,(x~-k)/

~l(X~_~) + ji(xk, tfl)FDi(~k) + ~(xk--l, t.+l)/

fii(xk-l)~i(xk-l) + ~i(xk-i, t~.}l)FDi(xk_ l)]

i=l,2, ”.. ,fv (17)

where tn +, = nAt, At is the time step; xk _ 1, xk and xk + 1

are positions of segmenting points on lines which can be

obtained [19] as

J

xi.

~~a!x=(k-l)At i=l,2, -.”, N.

(18)

From this equation, x~ is easily solved numerically on

computer.

It is equivalent to consider that decopling equations (1)

and (2) actually separates the coupled transmission line

system~nto N decoupled single lines of parameters ~i (x),

~i (x), Ri (x, W) and G, (x). Each single line has a trans-

mission mode on it with velocity 1/_. Equa-

tion (18) indicates that different single line is differently

segmented, and the total numer (Nli ) of segments of each

line is different too:

(!
D

NIi =
)/

~-dx At

in which D is the length of line.
There is a thing to be mentioned. The item

FDi (x) = ~
( )/

d Z@ dx

2Li (X) c, (x)

requires that the transmission lines must be continual. If

the nonuniformity of lines takes the form of discontinui-

ties, the method [16] for interconnected uniform lines ap-

plies, which isn’t within the interest of this paper.

In (16) and (17), the convolution items are the most

complicated and just where the crux of this method lies.

As mentioned before they can be calculated numerically.

For example

n–2

Ti(xk, tn) = i~o ~1 (X~, jAt)~i(X~, (n _ 1 – j) At) At

n–2

= ,~1 ~i(xk, jAt)~t(Xk, (n -1 -j) At) At

+ ~j(xk, 0)~j(xk7 (n – 1) At) At.

Considering another expression for ~ (x~, tn ):

n—l

~ (xk, tn) = j~l Ei (Xk, jAt)ji (xk, (n – 1 – j) At) At

Ti (xk, tn ) can be more accurately calculated as

~(x~, tn) = .5~j(x~, o)~i(x~, (n – 1) At) At + TT~(x~, t.)

+ .5~1(xA, (n – 1) At)~i(x~, O) At (19) ,

with

n–2

TL(Xk, tn) = ~~1 ~,(xk, jAt)~i(xk, (~ – 1 – j) At) At

(20)

Similarly for ‘j(x~ +,, t. + 1):
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Ti(%tl> ~n+l)

= .5~i(~ki1j O)~i(Xkflj nAt) At + 7’~(x~fl, t~+l)

+ .5~1(xki ,, nAt)~i(X~+ ,, O) At (21)

Relation (19) is important because it reduces CPU time

greatly.

In all the above expressions, ~, (x~, jAt) is obtained from

the IFFT of ~i (.x, w). In the IFFT, the frequency range

considered lies between – r/At and n-/At, so the time

step is At too, which is required for numerical calculation

of convolution. Theoretical y the considered frequency

range should be infinitely wide, but for any given driving

signal the spectrum of response signals is finite, and if the

time step At is fair little, 2m /At should be large enough

to cover it. The sample number of IFFT should be large

than or equal to the number of time samples to be ana-

lyzed.

In this paper, resistances are considered to be propor-

tional to the square root of angular frequency (w) due to

skin effect, i.e., ~i(x, w) (i = 1, 2, “ “ “ , N) are all pro-

portional to ~. Note that this isn’t also a restriction to

this method. Arbitrary relations between the resistances

and frequency can be dealt with in the same way.

Insert (19) and (21) into (16) and (17) respectively, get

CKAli~(X~+l, t~+l) + CKA2,7i(X~+l, t~+l) = CKA1

(22)

CKBl,7~(X~-1, t~+l) – CKB2,1i(X~_l, t~+l) = CKBj

j=l,2, . . ..~ (23)

where

CKAli =

CKBll =

CKA2i =

CKB2i =

CKAi =

CKB, =

1 + .5 At~i(x~+ , )/~l(X~+ , )

1 + .5 At~1(x~_ ,)/~l(x~_ ,)

&i(x~+l)/~i(x~+l) + .5(At)2~i(X~+l, 0)/

fil(X~+l)~l(Xk+l) – .5 AtFDi(~k+1)

&i(~k_l)/~l(~k_l) + .5(At)2~l(~k_1, 0)/

&i(xk_l)~i(xk-l)– .5AtF’~i(~k-i)

(1

+

—

—

— .5AtG1(X~) /~i (X~))~ (X~, tn )

Jh)/c(.xk)L(% L)

.5At~ (X~, tn )/ JZi (X~)~i (X~)

.5 AtT~(xkh ,, t,, + ,)/

&i (X~+ , ~, (X~+ , ) + .5AtFD[ (X~)

(1 – .5At~, (X~)/C, (XL ))T (xk, t.)

– & (xk)/~i (xk)~i (Xk, ‘,1)

+ .5AtTi (Xk, t. )/~~i(Xk)~l (X~)

+ .5AtT~(xk_l, t.+l)/

fii (Xk -, )~1 (X~ - I ) + .5 AtFDi (Xk)

Equations (22) and (23) give the relations between

transformed voltages and currents at closest segmenting

points on the two set characteristic lines. If the trans-

formed voltages and currents at every segmenting point

on every single line at the time t. is known, and boundary

conditions are given, then the transformed voltages and

currents at any segmenting point at time tn + I can be ob-

tained. This will be discussed in detail in next section.

III. CALCULATION PROCEDURE

If boundary and initial conditions are known, using (22)

and (23) the time response for given driving voltage can

be obtained marching-on-in-time.

Fig. 1 gives the two set characteristic lines dx/dt =

1/_ (a lines on the figure) and dx/dt =

– 1/~ ( @lines on the figure). From figure it is

clear that the transformed voltage and current at the input

end (x = O) of the ith single line at time tn + 1 can be ob-

tained from the ones at the closest segmenting point (point

A on figure) on the ~ line passing point (O, tn +, ). The co-

ordinates of point A are (xz, [.). Applying (23), get

CKBli~(O, .t+ ,) – CKB2i~i (0, t.+ 1) = CKBI

i=l,2,. ,., N. (24)

Note that x~ in the expression of CKB, is substituted by X2

here.

Equation (24) can be written in matrix form:

[CKB1] [~] – [CKB2] u] = [CKB] (25)

where [CKB1] and [CKB2] are N-by-N diagonal matrices,

[~], [j] and [CKB] are column vectors.

The boundary condition at the input end (x = O) of the

transmission line system can be generally written as

[v] = fi([z]) + [E]. (26)

In which [E] is the driving voltage column vector, A (” )

indicates a function. Insert (11) and (12) into (26), one

can get

[M] [v] = j ([M] p]) + [E]. (27)

Combining (25) and (27), [~] and [~] at x = O and t =

tn + I are gotten.

Similarity, at the output end (x = D), from the closest

segmenting point on the a line passing (D, t.+, ), one can

get

[CKA1] [~] + [CKA2] [~] = [CKA] (28)

and the boundary condition at x = D is

[M] [v] = fi([fl’1] ~]). (29)

Combining (28) and (29), [V(D, t.+,)] and [7(D, t,,+,)]

are gotten.

At the segmenting points between x = O and x = D,

such as point H(xk, t.+, ) on Fig. 1, the transformed volt-

ages and currents at time tn + I are calculated from the

closest segmenting points (such as point G(x~ –,, tn ) and

l(x~ +,, tn ) on figure) on both a line and ~ line passing
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0 X2 .4- xk-1 xk ~k+l ‘“” xNI~ D

Fig. 1. Curves of characteristics.

these points, thus (22) and (23) both apply, Forpoint H

on Fig. 1, there is

‘A’W:’:::)!=’B’‘=’’2”””N
(30)

where

[

CKA Ii CKA2, 1 ‘CKAi
[A] = ~KB1 [B] =

1 – CKB2, ‘ CKB[ 1

i=l,2, .””, N.

Note that x~ in the expression of CKAi is substituted by

xk -,, and x~ in the expression of CKB, is substituted by

xk+l.

Now, the transformed voltages and currents at every

segmenting point of every single line at time tn + 1 are

obtained; these values combined with the values before

time tn +, are then used to calculate the transformed volt-

ages and currents at time t.+ z. If initial conditions are

known, values at every time sample point cm be obtained

marching-on-in-time. At last, using (11) and (12), the time

response at both input and output ends are gotten:

[v] = [M] [7] (atx=Oorx=D)

[z] = [M] [1] (atx=Oorx;= D).

The above discussed procedure is for the general case

of multiconductor transmission line system: nonuniform,

having frequency-dependent losses and arbitra~ termi-

nals. For some special simple lines, the procedure can be

simplified relevantly. For example, for uni~form lines, the

calculation of positions of every segmenting point is un-

necessary, and for lines having frequency-independent

parameters, the convolution calculation is unnecessary.
Next section gives several examples for application of this

method to various kinds of transmission lines.

IV. EXAMPLES AND DISCUSSIONS

Example 1: Two linearly loaded uniform lines (see Fig.

2).
The line parameters of

MHz in this example are

the transmission system at 1

“’=[:23H’m
[.

144
[c] = _6 d

–6.4 1144pF/m

‘R]‘[’: ‘3m”rn
[

905 –11.8
[a = 1nS/m.

–11.8 905

The resistances are assumed to vary proportionally to the

square root of frequency. At one line end, one conductor

is driven by a voltage generator E(t) (in V):

[

2t t<.5ns

1 .5ns<t<5.5ns
E(t) =

l–2(t– 5.5) 5.5ns<t<6ns

o t~~ns.

The line length is D = .3 m. The boundary conditions at

the input and output ends are

[v] = [1] [R, ] + [E]

[v] = [R, ] [1]

where

[

50 0-
[Z?,] = o 75

[1

E(t)
[E]= o .

The results obtained wi..

[150 0
0, [R~] = a

o 50

h this method and with the fre-

quency-domain method [6], [7] are both shown in Fig. 2.

They are consistent as shown in the figure. For describing

how the frequency-dependence of resistances affects the

time response, a response voltage of the same transmis-

sion system, except the resistances of which are indepen-

dent of frequency, is given in Fig. 2, also, It’s easy to see

that there are two main differences between these two

cases. One is that the magnitudes of the response signals

are different. Fig, 2 shows the magnitude of voltage at the

output end of the driving line in the frequency-dependent

case is lower than that in the frequency-independent case.

It is understood that the frequency-dependence of resis-

tances enlarges the line resistances, thus reduces the mag-
nitude of response voltage at the output end of the driving

line. Another is that the response signals in the frequency-

dependent case are smoother, in which it is understood
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(a)

-.-u.
(v)

0.8 1

0.6.

~. -.., .-. —.— .m

o.4, -

~1

/l’
!

0.2 /

I
o.o - :Z:::. ---------- --- ---

+ , , 1 , , [ , I

0 3’6 9 12 Time(nS)

(b)

Fig. 2. (a) Transmission system in example one. (b) Response voltages at
the output end of the driving line; — with this method; with the
method in [6], [7]; – . –the frequency-independent case.

that the frequency-dependence of resistances softens the

response at high frequencies.

Example 2: Three nonlinearly loaded nonuniform lines

(see Fig. 3).

The transmission system in this example is a general

kind of line. The line circuit parameters are as follows:

l(x) = l./(l + k~ (x))

lm (x) =

k, (X) =

c(x) =

cm(x) =

kz (X) =

10 =

k, (X) 1(X)

0.1(1 + .6 sin (TX + 7r/4))

c./(l – kz(x))

–k2 (X) C(X)

0.15(1 + .6 sin (Tx + T/4))

387 nH/m

104.13 pF/m

1.2 Q/m at 1 MHz and is proportional

to W

o

gm=o

E(t)
t (v)

‘=1’imehs)
o .5 5.5 6

voltage
(v) - 1

“,:[-~----,,+
-0.3 I

0“3 6 9 12 Time(nS)

(b)

Voltage
—..

(v)
1 I

0.2

0.1

0.0

-0.1

I
I I
~—————l
o 3 6 12 Time(nS)

(c)

Fig. 3. (a) Transmission system in example two. (b) Response voltages on
the driving line; — at input end (Vlo); . . . at output end (VI L).
(c) Crosstalk voltages on the quiescent lines: — V2G;–––V2L;– . –V3G;
. v,L.

where 1(.x), 1~(x) are the diagonal and second diagonal

elements of the inductance matrix respectively, and the

same meanings for c(x), cm(.x), r(x), r~ (x), g(x) and g~ (x).
The driving voltage is shown in Fig. 3(a). The nonlinear
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loads are characterized by the relation

1= 10(e40v – 1)

where 1 is the current in nA flowing throug,h the loads, V

is the corresponding voltage drop in volts. The results are

show~ in Fig. 3(b) and (c). The system of simultaneous

nonlinear equations occurring in these examples are solved

by the Newton Method.

In both of the above examples, convolution proves to

be the main place where calculation time is consumed.

Our calculations are performed on a PC-386/20. The

numbers of the time samples and CPU time of these two

examples are 350, 300, 390s, 720 s, respectively, thus

this method is little time-consuming and convenient

enough to be performed on MIC-PC.

On the other hand, in this method only the IFFT for

~i (x, w) is made, and the calculations proceed directly in

the time-domain, i.e., FFT for the driving voltage and the

relevant IFFT are unnecessary. As well known, direct

FFT and IFFT for signals are the major factors inducing

errors and oscillations in procedure of obta~ining time re-

sponse of multiconductor transmission lines. So, with this

method the results are very stable with little oscillations

and accurate even when the number of time samples is

fair little, which can be seen from comparison of results

obtained here with the ones obtained with ctther methods.

This method has still a advantage that it is straightfor-

ward and has some physical meanings. The crux lies in

the convolution. The convolution occurring in this method

has three advantages: first, it relates the voltages and cur-

rents at one time point to the ones before that time point

and demonstrates clearly the cause and effect of signals;

secondly, it includes the frequency-dependency of param-

eters in the time domain thus makes this method power-

ftil; thirdly, so far, if considering the resistance to be fre-

quency-dependent, then definition of resistance is given

only in the frequency-domain, but using thle convolution

occurring in this method, the definition of resistance in

the time domain can be given as below.

Considering a one-line transmission system. The teleg-

rapher’s equations in the time-domain and frequency-do-

main are

13v(x, t)/f3.x = –L(x) 131(x, t)/at – I@, t)z(x, t) (31)

~V(x, w)/~w = –jwL(x) Z(.x, w) – Z?(x, w)l(x, w) (32)

Using the inversely Fourier transform of (32), we get

av(x, t)/i3x = –L(x) az(x, t)/& – T(X> t) (33)

where

!

+m

T(x, t) = + _m R(x, w) I(X, w) eJwrdw

is just the convolution which can be calculated numeri-

cally as discussed before. Comparing (3 l) and (33), we

get

R(x, t) = T(X3 t)/l(x, 1), (34)

which is the definition of resistance in the time-domain.

It indicates that resistance at any time is decided by both

the system structure and the driving signal.

The main factor introducing errors in this method may

be the fact that each decoupled single line couldn’t just

be segmented into integer number of parts in the char-

acteristic method because of the different velocities of

each transmission mode of multiconductor lines, thus

suitable rounding off must be taken.

V. CONCLUSION

An effective new method for analysis of the time re-

sponse of multiconductor transmission lines is presented.

This method combines the functions of both convolution

and characteristics, so the lines which can be analyzed

may be nonuniform and arbitrarily loaded, and may have

frequency-dependent losses. The advantage of this method

is that it is powerful enough to analyze a wide range of

transmission systems, some of which are not easy to ana-

lyze with other existing methods. It includes the fre-

quency-dependence of line losses in the time-domain te-

legrapher’s equations for the first time through the

introduction of convolution. This kind of convolution may

have other applications; for example, the definition of re-

sistance can be given in the time-domlain with it.
The crux of this method lies in inversely Fourier trans-

forming the telegrapher’s equations in the frequency-do-

main and obtaining a set of time-domain equations which

can be numerically solved by the characteristic method.

Because this method is in the time-domain, arbitrary ter-

minals can be dealt with, and because of segmenting the

lines in the characteristic method, ncmuniform lines can

be studied.

Two examples demonstrate that this method is correct

and reliable, with stable and accurate results. This method

is fast and convenient, so it can be performed on micro-

computers of the PC series.

In our future work, the time response of nonuniform

lines with frequency-dependent inductances and capaci-

tances may be analyzed.
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