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Analysis of the Time Response of Multiconductor
Transmission Lines with Frequency-Dependent
Losses by the Method of Convolution-
Characteristics

Jun-Fa Mao and Zheng-Fan Li

Abstract—A new method for analysis of the time response of
multiconductor transmission lines with frequency-dependent
losses is presented. This method can solve the time response of
various kinds of transmission lines with arbitrary terminal net-
works. Particularly it can analyze nonuniform lines with fre-
quency-dependent losses, for which there is no existing effective
method to analyze their time response so far. This method starts
from the frequency-domain telegrapher’s equations. After de-
coupling and inversely Fourier transforming, then a set of de-
coupled time-domain equations including convolutions are
given. These equations can be solved with the characteristic
method. The results obtained with this method are stable and
accurate. Two examples are given to illustrate the application
of this method to various multiconductor transmission lines.

I. INTRODUCTION

N LARGE-SCALE high-speed integrated circuits,

multiconductor transmission lines are usually used ‘as
interconnections. When the speed is relatively high, the
delay, crosstalk, and distortion of signals [1], [2] are ob-
vious. The time response of these lines has been of inter-
est'for many years and well studied [3]-[9]. For different
kinds of lines, there are different methods for analysis.

For uniform lines, lossless lines can be easily analyzed
by the modal analysis method in the time-domain [10].
Arbitrarily loaded lossy uniform lines with frequency-in-
dependent parameters have been analyzed by the charac-
teristic method [6] et al. Linearly loaded uniform lines
with frequency-dependent parameters can be studied with
the frequency-domain method [7] et al. For nonlinearly
loaded uniform lines with frequency-dependent parame-
ters, there have been several efficient methods to analyze
[11]-[13]. In these methods the relations between the re-
sponse signals at the input and output ends of the lines are
first obtained in the frequency-domain by solving the fre-
quency-domain telegrapher’s equations directly or indi-
rectly, then transformed into the time-domain either by
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convolution [11], [13] or by polynomial ratio approxi-
mation [12].

About the nonuniform lines, several methods have been
delivered for analysis in the case of frequency-indepen-
dent parameters [8], [14], [15], but these methods are dif-
ficult to be applied to the case of frequency-dependent
parameters. If nonuniform lines with frequency-depen-
dent parameters are approximated by many short sections
of uniform lines, the methods as given in [11]-[13] may
be able to analyze them, but this would make the problem
complicated. So there is no efficient method for analysis
of the time response of nonuniform lines with frequency-
dependent parameters so far.

In this paper, a method of convolution-characteristics
is presented. Convolution is a usual technique to deal with
the frequency-dependence of line parameters, and the
characteristic method has been applied to analyze non-
uniform lines with frequency-independent parameters
[14]. The method of convolution-characteristics in this
paper combines the functions of both convolution and
characteristics. This method can analyze the time re-
sponse of nonuniform lines with frequency-dependent
losses under arbitrary load conditions. Of course, as a
general method, it can also analyze the various kinds of
uniform transmission lines described above. It starts from
the telegrapher’s equations in the frequency-domain. The
structure and coupling mode of the transmission lines
considered may be arbitrary, but for the reason of illus-
trating this method more clearly, two assumptions are
made in this paper. Under these assumptions, the teleg-
rapher’s equations in the frequency-domain are easily de-
coupled and then inversely Fourier transformed. Thus a
set of decoupled time-domain equations including con-
volutions are gotten, the convolutions are produced due
to the frequency-dependent losses. These decoupled
equations can be numerically solved using the character-
istic method [16] in which the segmentation of each de-
coupled line is taken, and this is why the nonuniformity
of the lines can be studied. Two examples are given to
illustrate the application of this method, and some results
are favorably compared with those obtained with other
methods.

0018-9480/92$03.00 © 1992 IEEE
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II. THEORY

In this paper multiconductor transmission lines are con-
sidered to be quasi-TEM lines so they satisfy the teleg-
rapher’s equations. In general case, the parameters of the
transmission lines are frequency-dependent considering
the ultra-broadband spectrum occupied by the high-speed
signals, but only the frequency-dependent performance of
resistances and conductances of lines is obvious. Capac-
itances are almost frequency-independent. For induc-
tances of lines, their internal inductances vary with fre-
quency, so the total inductances are frequency-dependent
[4], but the variation of them is unremarkable because the
internal inductances are only small parts of the total in-
ductances for general transmission system structure in
large-scale high-speed integrated circuits. Hence in prac-
tical case, only the frequency-dependence of resistances
and conductances of the lines must be considered, while
the inductances and capacitances are approximated to be
independent of frequency.

As will be seen, the frequency-dependence of conduc-
tances can be dealt with the same way to that of resis-
tances. On the other hand, conductances have less influ-
ence on the time response of the lines than resistances in
practical transmission lines, so in this paper the conduc-
tances are also considered to be frequency-independent
for simplification. Then the telegrapher’s equations of the
multiconductor lines in the frequency-domain can be writ-
ten as

a[V(x, w)]/ox

— [RGx, )] [I{x, w)]

— WL Ux, )] M
~[GE)] [V(x, w)]

— WCW] Ve, @) Q)

where [L(x)], [C(X)], [R(x, w)] and [G(x)] are respectively
inductance, capacitance, resistance and conductance
N-by-N (N is the number of the lines) matrices per unit
length. They are all functions of position (x) on the lines
in general nonuniform case, but from the above discus-
sions, only [R(x, w)] is still function of angular frequency
(w) because of skin effect and proximity effect.
Equations (1) and (2) are coupled ones, there are sev-
eral methods to decouple them [9], [14], [17]. Here we
decouple equations (1) and (2) with the method in [17] to
illustrate our method in this paper more clearly. In the
method in [17], two assumptions on the structure of the
coupled lines are made. One is that each transmission line
is coupled directly only with the closest one to the left
and with the closest one to the right. This assumption is
valid in some practical cases, in particular when the trans-
mission lines are microstrips on a multilayer printed cir-
cuit board where every signal plane is sandwiched be-
tween two ac ground planes. Another assumption is that
the lines are identical and equally spaced and side effects
are negligible. This assumption is reasonable for some
transmission lines, too. In [18] the errors introduced by
these two assumptions are analyzed and a method to find

I, w)]/ox

the upper bounds on such errors is developed. Under these
assumptions [L(x)], [C(x)], [R(x, w)] and [G(x)] are all
symmetric tridiagonal Toeplitz matrices at any position
(x) and frequency (w). Matrices of this kind have an im-
portant property in which they can be diagonalized with
a matrix [M] which is the matrix of right eigenvectors of
such matrices and is decided only by N, no matter what
value of the elements of such matrices are. Let

[Vix, )] = [M][V(x, w)] 3)
U, )] = M] [1(x, w)] 4)

and insert them into (1) and (2), a set of decoupled equa-
tions are then obtained:

A[V(x, w)]/ox

—[R(x, )] [(x, w)]

— WL [1(x, )] 3)
~[GWI [V, w]

— WCOI [V(x, w)] ©®

where [L(x)] = [M] '[L(x)] [M] is diagonal, so are
[C®], [R(x, w)] and [G(x)]. [M] is the matrix of right
eigenvectors of N-by-N Toeplitz matrices.

Note that the above two assumptions are not restric-
tions of the method in this paper. For the general trans-
mission lines with arbitrary structure, the decoupling
method in [14] applies. In that method in [14], [L(x)] and
[C(x)] are diagonalized by the matrices of eigenvectors of
[L(x)] [C(x)] and [C(x)] [L(x)]. As long as [L(x)] and
[C(x)] are diagonalized, the characteristic method can be
applied, no matter whether [R(x, )] and [G(x)] are dia-
gonalized.

Equations (5) and (6) can be rewritten as

I

o1I(x, w)]/0x

V,(x. w)/9x = —R,(x, W1 &x, w) — jwL, (1, (x, w)
)
aL,(x, w/ox = —G,()V,(x. w) — jwC,(0) V,(x, w)
i=1,2 ---,N (8)

where L, (x), C,(X), R, (x, w) and G, (x) are the ith diago-
nal elements of matrices [L(x)], [C(x)], [R(x, w)] and
[G(x)], respectively, V,(x, w) and I, (x, w) are the ith ele-
ments of vectors [V (x, )] and [1(x, w)].

Now inversely Fourier transform (7) and (8), one can
get

Vi(x, 1)/0x = Ti(x, ©) — L,(x)dL(x, 1) /3t 9)

871(x5 t)/ax = —G(x)v,(x, n - Z‘l(‘x)al_/l (X, t)/at
(10)

in which V,(x, #) and I (x, ) are the inverse Fourier trans-
forms of V,(x, w) and I (x, w), i = 1,2, -+ , N. If
{V(x. 0] and [{(x, )] are the time response we want, and
[V(x, ] and [I(x, )] are the vectors whose elements are
V,(x, ) and I, (x, 1), because [M] is a constant matrix, it
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is easy to see that

Vx, 0] = IM][V(x, 0] (11)
Ux, 0] = M1 [I(x, 1)]. (12)

In (9), T;(x, t) is a convolution:
TLx, 0= SO Rx, DLx, 1t — 1) dr (13)

where R.(x, 1) is the inverse Fourier transform of
R;(x, w). T;(x, ) can be numerically calculated which will
be seen below.

Equations (9) and (10) are decoupled ones in the time-
domain and can be solved with the generalized character-
istic method. Let

de/dt = 1/NLx)Cx), i=1,2 - ,N
from (9) and (10), one can get
dW; + JL,/ClL)/dt
= - (%,G,/C; + T,/NLC) + L.FD,
i=1,2,"++,N (14)

where brackets have been omitted for brevity, and
1 L(x
T (%Jﬁ)/ “
Similarily, let dx/dt = —1/ mx_) , there is
dV; - NL,/CI)/di
= (¥,G/C — T,/Jff) + I,FD,
i=1,2,---, N

FD, = FD,(x) =

(15)

Equations (14) and (15) can be given their numerical
forms with the trapezoid algorithm:

ViGes 1 tos1) + VL0 1)/CiGw VLG 15 1)
= Vit 1) + VLo /C 0T 1)
+ SA=V, 0 1) G0 /Ci0) = T, s 1)/
VL3 Ci0) = Vil tae 1) GiGes 1)/
Ci(tir1) + L t)FD () — Tis 1, a1/
VL (1) G4 1)
+ Lks 1> tas ) FD; (i 41)]
Vit 1s taat) = VLiGk— 1)/ G Ve 15t 1)
= Vi t) — VL) /G L (e, 1,)
+ SAL-Vi(x 1) Gi(x) / Cx) + T, 1)/
VL) Ce) — Viboio1s tar D Gte-1)/
C, () + L, ,)FD;(0) + Ti (-1t 1)/
VLD Ci@e—1) + L0— 1ot ) FD; (1))
i=1,2,--+*,N an

(16)

where t,,, = nAt, At is the time step; x;_ 1, x; and x4
are positions of segmenting points on lines which can be
obtained [19] as -
Xk
S VL) Ci(x)dx = (k — 1) At i =
0

1,2,--+,N

(18)

From this equation, x, is easily solved numerically on
computer.

It is equivalent to consider that decopling equations (1)
and (2) actually separates the coupled transmission line
system into N decoupled single lines of parameters L;(x),
C;(x), R;(x, w) and G, (x). Each single line has a trans-
mission mode on it with velocity 1/VL;(x)C;(x). Equa-
tion (18) indicates that different single line is differently
segmented, and the total numer (NI;) of segments of each
line is different too:

D
= <SO VL, (x) C; (x) dx> /At

in which D is the length of line.
There is a thing to be mentioned. The item

1L (L
Tw <5, (x)>/ d

requires that the transmission lines must be continual. If
the nonuniformity of lines takes the form of discontinui-
ties, the method [16] for interconnected uniform lines ap-
plies, which isn’t within the interest of this paper.

In (16) and (17), the convolution items are the most
complicated and just where the crux of this method lies.
As mentioned before they can be calculated numerically.
For example

FD;(x) =

Ti(xka tn) = Rz(xks jAt)ji(xka (l’l -1~ .]) At) Az

n

Ri(xe, jADT, (%, (n — 1 = j) An) At

EML M

+ Ri(ui, 010, (0 — 1) A1) At

Considering another expression for T;(x;, t,):
n—1

TG 1) = 20 Ry jAO LG (1 — 1 = j) A At

j=

T;(x;, t,) can be more accurately calculated as

t,) = SR (x, 0)];(xp, (n — 1) A At + TT,(x;, )

+ 5R, (%, (n — 1) AN (x,, 0) At (19)

Ti (xk,

with
n-2
TT,(x, 1) = -21 R, (G, JANT (xy, (n — 1 — ) AD) At
j=
(20)

Similarly for T; (g 415 tas1):
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T 15 tast)
= SRy 1, L (1, nAD A + TT, (X s 15 ys1)
+ 5R (x5 1, nADT; (xp 1, 0) A 1)

Relation (19) is important because it reduces CPU time
greatly.

In all the above expressions, R, (x,, jAf) is obtained from
the IFFT of R, (x, w). In the IFFT, the frequency range
considered lies between —wx /At and w/At, so the time
step is At too, which is required for numerical calculation
of convolution. Theoretically the considered frequency
range should be infinitely wide, but for any given driving
signal the spectrum of response signals is finite, and if the
time step At is fair little, 27 /At should be large enough
to cover it. The sample number of IFFT should be large
than or equal to the number of time samples to be ana-
lyzed.

In this paper, resistances are considered to be propor-
tional to the square root of angular frequency (w) due to
skin effect, i.e., R;(x, w) (i = 1,2, -+ -+ , N) are all pro-
portional to Vw. Note that this isn’t also a restriction to
this method. Arbitrary relations between the resistances
and frequency can be dealt with in the same way.

Insert (19) and (21) into (16) and (17) respectively, get

CKAli—I—/i(xk+l’ tn+1) + CKAzlii(xk+l’ tn+l) = CKAI

(22)

CKBIII_/,(X/(_], ln+l) - CKBZ,Z‘(X](_I, tn+l) = CKB!

i=1,2,+ N (23)
where

CKAl; = 1 + SAtG; (x4 1)/C (X 1)
CKBl1, = 1 + .5A1G, (%~ )/ C, (% - 1)
VL 1)/ Gl 1) + 5A R (X 11, 0)/
VL 5+ ) C (1) — SAFD; (x4 1)
CKB2; = VL, (x¢~ )/ C.(xi—y) + 5(A°R,(xy—,, 0)/
VL 1) Gy 1) — SAFD; (x )
CKA; = (1 — 5AG,(x)/ C:(x) Vi (x, 1,)
VL () / C o) L (s 1)
SALT; (5, 1)/ VL () G (xy)
SATT; X r 1 tas1)/
VL (631G, (v 1) + SAtFD, (x;)
CKB, = (1 — .5A1G,(x,)/C, X))V, (xs, 1,)
~ VL) /T ) T (ks 1)
+ SAIT (5, 1)/ VL () C, ()
+ SAITT (x4 _ (5 1)/
VL (%~ 1)C,(X_ 1) + .SAIFD;(x;)

+

!

Equations (22) and (23) give the relations between
transformed voltages and currents at closest segmenting
points on the two set characteristic lines. If the trans-
formed voltages and currents at every segmenting point
on every single line at the time ¢, is known, and boundary
conditions are given, then the transformed voltages and
currents at any segmenting point at time ¢, | can be ob-
tained. This will be discussed in detail in next section.

III. CALCULATION PROCEDURE

If boundary and initial conditions are known, using (22)
and (23) the time response for given driving voltage can
be obtained marching-on-in-time.

Fig. 1 gives the two set characteristic lines dx/dr =
I/VZ,- (x)C;(x) (a lines on the figure) and dx/dt =
-1 /«/Z,. (x) C;(x) (B lines on the figure). From figure it is
clear that the transformed voltage and current at the input
end (x = 0) of the ith single line at time ¢, , ; can be ob-
tained from the ones at the closest segmenting point (point
A on figure) on the § line passing point (0, #, . ). The co-
ordinates of point A are (x», #,). Applying (23), get

CKBL, V0, t,4,) — CKB2,;(0, t,.|) = CKB,
i=1,2,---,N. 24)

Note that x, in the expression of CKB, is substituted by x,
here.
Equation (24) can be written in matrix form:

[CKB1] [V] — [CKB2][I] = [CKB] 25)

where [CKB1] and [CKB2] are N-by-N diagonal matrices,
[V1, [I] and [CKB] are column vectors.

The boundary condition at the input end (x = 0) of the
transmission line system can be generally written as

[Vl = AWUD + [E]. (26)

In which [E] is the driving voltage column vector, f;(*)
indicates a function. Insert (11) and (12) into (26), one
can get

[M]11V] = fi(IM]1I]) + [E]. @7

Combining (25) and (27), [V] and [I] atx = O and ¢ =
t, . are gotten.

Similarily, at the output end (x = D), from the closest
segmenting point on the « line passing (D, ¢, , ;), one can
get

[CKA1] [V] + [CKA2] [I] = [CKA] (28)
and the boundary condition atx = D is
[M]1[V] = f,AM] [T)). 29

Combining (28) and (29), [V(D, t,. )] and [I(D, 1, . )]
arc gotten.

At the segmenting points between x = 0 and x = D,
such as point H(x, t,, ;) on Fig. 1, the transformed volt-
ages and currents at time f, ., are calculated from the
closest segmenting points (such as point G(x; _ |, t,) and
I(x; 11, t,) on figure) on both « line and g8 line passing
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Fig. 1. Curves of characteristics.

these points, thus (22) and (23) both apply. For point H
on Fig. 1, there is ‘

Vil tas1)
[A]zxz[ ¢ “}:[B] i=1,2,-,N
Ii(xkytn+.l)
(30)
where
[CKAL CKAZ,} . } CKA,}
CKBl, -CKB2,|’ | CKB,
i=1,2,---,N.

Note that x; in the expression of CKA; is substituted by
x;_1, and x; in the expression of CKB, is substituted by
Xe+1-

Now, the transformed voltages and currents at every
segmenting point of every single line at time ¢, are
obtained; these values combined with the values before
time z, , ; are then used to calculate the transformed volt-
ages and currents at time 7, ,,. If initial conditions are
known, values at every time sample point can be obtained
marching-on-in-time. At last, using (11) and (12), the time
response at both input and output ends are gotten:

V] = [M][V]
[ = [M][]]

(atx = Oorx = D)
(atx = Qorx = D).

The above discussed procedure is for the general case
of multiconductor transmission line system: nonuniform,
having frequency-dependent losses and arbitrary termi-
nals. For some special simple lines. the procedure can be
simplified relevantly. For example, for uniform lines, the

calculation of positions of every segmenting point is un-.

necessary, and for lines having frequency-independent
parameters, the convolution calculation is unnecessary.
Next section gives several examples for application of this
method to various kinds of transmission lines.

IV. EXAMPLES AND DISCUSSIONS
Example 1: Two linearly loaded uniform lines (see Fig.
2).
The line parameters of the transmission system at 1
MHz in this example are

[ 309 21.7
= | 21.7 309} nH/m
144 -6.4] _
1= | 6.4 144 } PF/m
[R] _ 8240 539} m/m
| 539 8240
Gl = [ 905 —11.8} oS /m.
| —11.8 905

The resistances are assumed to vary proportionally to the
square root of frequency. At one line end, one conductor
is driven by a voltage generator E(¢) (in V):

2t t<.5nsr
Sns <t <55ns
1 —2(t—55 55ns=<t<6ns

0 t = 6ns.

E@) =

The line length is D = .3 m. The boundary conditions at
the input and output ends are

vVl = UlIR ] + [E]
[Vl = [R,]1 ]

where

The results obtained with this method and with the fre-
quency-domain method [6], [7] are both shown in Fig. 2.
They are consistent as shown in the figure. For describing
how the frequency-dependence of resistances affects the
time response, a response voltage of the same transmis-
sion system, except the resistances of which are indepen-
dent of frequency, is given in Fig. 2, also. It’s easy to see
that there are two main differences between these two
cases. One is that the magnitudes of the response signals
are different. Fig. 2 shows the magnitude of voltage at the
output end of the driving line in the frequency-dependent
case is lower than that in the frequency-independent case.
It is understood that the frequency-dependence of resis-
tances enlarges the line resistances, thus reduces the mag-
nitude of response voltage at the output end of the driving
line. Another is that the response signals in the frequency-
dependent case are smoother, in which it is understood



642 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 4, APRIL 1992

)
v—a"‘-\ Time(nS)

. 5.5 6
E(t) 500 D=0.3mn 508
'_.
Vi
758 * 500
MW
(a)
Voltage
V) |
0.8
0.6
9
0.4
0.2 ]
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(b)
Fig. 2. (a) Transmission system in example one. (b) Response voltages at
the output end of the driving line; with this method; ...with the
method in [6], [7]; - - -the frequency-independent case.

that the frequency-dependence of resistances softens the
response at high frequencies. '

Example 2: Three nonlinearly loaded nonuniform lines
(see Fig. 3).

The transmission system in this example is a general
kind of line. The line circuit parameters are as follows:

Ix) = 1,/ + k&)
Ln(®) = ki () I(x)
k() = 0.1(1 + .6 sin (zx + 7/4)
cx) = ¢,/(1 — k(%))
Cn(®) = —ky &) c(x)
ky(x) = 0.15(1 + .6 sin (mx + 7/4))
I, =387 nH/m
¢, = 104.13 pF/m

r = 1.2 Q/m at 1 MHz and is proportional

to V\w|/27r

E(t)

Time(nS)
10Q
D
1750 4 LRRTY
g———lvwk——-F—:—_;—z——M—%——l
150 V8 Vo 100
I AWM
1] w 3
V3G V3L
b t
(@)
Yoltage
V)
0.6 4
0.3 4
0.0 4
~0.3 4
-0.6 J
T T T T T T T T T
0 3 6 9 12 Time(ns)
(b)
Voltage
V) .
0.2

0.1

0.0

-0.2 A

¥ T L ¥ - T ¥ T i ¥

Time(nS)
©

Fig. 3. (a) Transmission system in example two. (b) Response voltages on

the driving line; at input end (V,g); * - - at output end (V).

(c) Crosstalk voltages on the quiescent lines: VoG ——=Vop; -+ =Vig;
. .V3L~ ’

where [(x), [, (x) are the diagonal and second diagonal
elements of the inductance matrix respectively, and the
same meanings for c(x), ¢, (x), r(x), r,,(x), g(x) and g, (x).
The driving voltage is shown in Fig. 3(a). The nonlinear
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loads are characterized by the relation
I'=10*" - 1

where I is the current in nA flowing through the loads, V
is the corresponding voltage drop in volts. The results are
shown in Fig. 3(b) and (c). The system of simultaneous
nonlinear equations occurring in these examples are solved
by the Newton Method.

In both of the above examples, convolution proves to
be the main place where calculation time is consumed.
Our calculations are performed on a PC-386/20. The
numbers of the time samples and CPU time of these two
examples are 350, 300, 390s, 720 s, respectively, thus
this method is little time-consuming and convenient
enough to be performed on MIC-PC.

__ On the other hand, in this method only the IFFT for
R;(x, w) is made, and the calculations proceed directly in
the time-domain, i.e., FFT for the driving voltage and the
relevant IFFT are unnecessary. As well known, direct
FFT and IFFT for signals are the major factors inducing
errors and oscillations in procedure of obtaining time re-
sponse of multiconductor transmission lines. So, with this
method the results are very stable with little oscillations
and accurate even when the number of time samples is
fair little, which can be seen from comparison of results
obtained here with the ones obtained with other methods.

This method has still a advantage that it is straightfor-
ward and has some physical meanings. The crux lies in
the convolution. The convolution occurring in this method
has three advantages: first, it relates the voltages and cur-
rents at one time point to the ones before that time point
and demonstrates clearly the cause and effect of signals;
secondly, it includes the frequency-dependency of param-
eters in the time domain thus makes this method power-
ful; thirdly, so far, if considering the resistance to be fre-
quency-dependent, then definition of resistance is given
only in the frequency-domain, but using the convolution
occurring in this method, the definition of resistance in
the time domain can be given as below.

Considering a one-line transmission system. The teleg-
rapher’s equations in the time-domain and frequency-do-
main are

aVix, n/ax
Vi, wy/ow

—L(x)dl(x, 1)/dt — R(x, nl(x, )
—jwL(x) I(x, w) — R(x, w)I(x, w)

€2))
(32

]

Using the inversely Fourier transform of (32), we get

oV(x, n/ox = —L(x)3l(x, 1)/dr — T(x, )  (33)

where
+ o

R(x, w) I(x, w)e™ dw

;)
Tx, ) = )
is just the convolution which can be calculated numeri-
cally as discussed before. Comparing (31) and (33), we
get

Rix, ) = Tx, /I, 9, 34

which is the definition of resistance in the time-domain.
It indicates that resistance at any time is decided by both
the system structure and the driving signal. '

The main factor introducing errors in this method may
be the fact that each decoupled single line couldn’t just
be segmented into integer number of parts in the char-
acteristic method because of the different velocities of
each transmission mode of multiconductor lines, thus
suitable rounding off must be taken.

V. CONCLUSION

An effective new method for analysis of the time re-
sponse of multiconductor transmission lines is presented.
This method combines the functions of both convolution
and characteristics, so the lines which can be analyzed
may be nonuniform and arbitrarily loaded, and may have
frequency-dependent Josses. The advantage of this method
is that it is powerful enough to analyze a wide range of
transmission systems, some of which are not easy to ana-
lyze with other existing methods. It includes the fre-
quency-dependence of line losses in the time-domain te-
legrapher’s equations for the first time through the
introduction of convolution. This kind of convolution may
have other applications; for example, the definition of re-
sistance can be given in the time-domain with it.

The crux of this method lies in inversely Fourier trans-
forming the telegrapher’s equations in the frequency-do-
main and obtaining a set of time-domain equations which
can be numerically solved by the characteristic method.
Because this method is in the time-domain, arbitrary ter-
minals can be dealt with, and because of segmenting the
lines in the characteristic method, nonuniform lines can
be studied. ‘

Two examples demonstrate that this method is correct
and reliable, with stable and accurate results. This method
is fast and convenient, so it can be performed on micro-
computers of the PC series.

In our future work, the time response of nonuniform
lines with frequency-dependent inductances and capaci-
tances may be analyzed.
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